Abstract

Bitcoin price prediction based on people’s opinions on Twitter usually requires millions of tweets, using different text mining techniques, and developing a machine learning model to perform the prediction. These attempts lead to the employment of a significant amount of computer power, central processing unit (CPU) utilization, random-access memory (RAM) usage, and time. To address this issue, in this paper, we consider a classification of tweet attributes that effects on price changes and computer resource usage levels while obtaining an accurate price prediction. To classify tweet attributes having a high effect on price movement, we collect all Bitcoin-related tweets posted in a certain period and divide them into four categories based on the following tweet attributes: <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(i)$ </tex-math></inline-formula> the number of followers of the tweet poster, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(ii)$ </tex-math></inline-formula> the number of comments on the tweet, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(iii)$ </tex-math></inline-formula> the number of likes, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(iv)$ </tex-math></inline-formula> the number of retweets. We separately train and test by using the Q-learning model with the above four categorized sets of tweets and find the best accurate prediction among them. We compare our approach with a classic approach where all Bitcoin-related tweets are used as input data for the model, by analyzing the CPU workloads, RAM usage, memory, time, and prediction accuracy. The results show that tweets posted by users with the most followers have the most influence on a future price, and their utilization leads to spending 80% less time, 88.8% less CPU consumption, and 12.5% more accurate predictions compared with the classic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.