Abstract

We have investigated {332}<113> twinning and detwinning mechanisms in β-Ti alloys. Microstructure-twinning relations were evaluated in a β-Ti-15Mo (wt.%) alloy by statistical analysis of the evolving twin structure upon deformation by in-situ SEM testing and electron backscattering diffraction (EBSD). We find that most of the primary twins (~80%) correspond to the higher stressed variant and follow Schmid’s law with respect to the macroscopic stress. Detwinning mechanism was evaluated in a multilayered β-Ti-10Mo-xFe (x: 1-3 wt.%) by EBSD. We find that the detwinning process consists of two independent events that occur at two different microstructural regions, i.e. twin tips located at grain interiors and grain boundaries. Both detwinning modes can be explained from a thermodynamic standpoint where the boundary dissociation processes minimize the boundary free energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.