Abstract

We report the synthesis of ternary gallium tin oxide nanocrystals, and demonstrate that their photoluminescence can be tuned through the visible region by changing Ga:Sn ratio. By substitutional doping with Ga3+, the PL intensity of SnO2 nanocrystals is enhanced by nearly 3 orders of magnitude, reaching photoluminescence quantum yield of >40%. Increase in PL intensity is attributed to the formation of donor and acceptor pairs, and the increase in emission energy is discussed in the context of band-gap expansion and stronger Coulomb interaction between charged defect sites. Time-resolved and steady-state photoluminescence spectroscopies reveal that the interaction of extrinsic and native defects is driven by the nature of the dopant ion. By adjusting various reaction conditions, we prepared the nanocrystals with nearly ideal scotopic-to-photopic ratio and a quantum yield of ca. 34%, attesting to the potential of these nanocrystals for general lighting applications. The results of this work provide new insi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.