Abstract

A non-uniform hypergraph $H=(V,E)$ consists of a vertex set $V$ and an edge set $E\subseteq 2^V$; the edges in $E$ are not required to all have the same cardinality. The set of all cardinalities of edges in $H$ is denoted by $R(H)$, the set of edge types. For a fixed hypergraph $H$, the Turán density $\pi(H)$ is defined to be $\lim_{n\to\infty}\max_{G_n}h_n(G_n)$, where the maximum is taken over all $H$-free hypergraphs $G_n$ on $n$ vertices satisfying $R(G_n)\subseteq R(H)$, and $h_n(G_n)$, the so called Lubell function, is the expected number of edges in $G_n$ hit by a random full chain. This concept, which generalizes the Turán density of $k$-uniform hypergraphs, is motivated by recent work on extremal poset problems. The details connecting these two areas will be revealed in the end of this paper.Several properties of Turán density, such as supersaturation, blow-up, and suspension, are generalized from uniform hypergraphs to non-uniform hypergraphs. Other questions such as "Which hypergraphs are degenerate?" are more complicated and don't appear to generalize well. In addition, we completely determine the Turán densities of $\{1,2\}$-hypergraphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.