Abstract
Bacterial cytokinesis begins with the assembly of FtsZ into a Z ring at the center of the cell. The Z-ring constriction in Gram-negative bacteria may occur in an environment where the periplasm and the cytoplasm are isoosmotic, but in Gram-positive bacteria the constriction may have to overcome a substantial turgor pressure. We address three potential sources of invagination force. (1) FtsZ itself may generate force by curved protofilaments bending the attached membrane. This is sufficient to constrict liposomes in vitro. However, this force is on the order of a few pN, and would not be enough to overcome turgor. (2) Cell wall (CW) synthesis may generate force by pushing the plasma membrane from the outside. However, this would probably require some kind of Brownian ratchet to separate the CW and membrane sufficiently to allow a glycan strand to slip in. The elastic element is not obvious. (3) Excess membrane production has the potential to contribute significantly to the invagination force. If the excess membrane is produced under the CW, it would force the membrane to bleb inward. We propose here that a combination of FtsZ pulling from the inside, and excess membrane pushing membrane inward may generate a substantial constriction force at the division site. This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for CW growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane.
Highlights
This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for cell wall (CW) growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane
The cytokinesis system of almost all bacteria and many archaea is based on a ring of the tubulin homolog FtsZ (Bi and Lutkenhaus, 1991), termed the Z ring, which recruits up to a dozen downstream proteins to achieve constriction of the membranes and cell wall (CW)
In many bacteria the protofilaments are tethered to the plasma membrane (PM) by FtsA, which binds the C-terminal peptide of FtsZ and inserts its own C-terminal amphipathic helix into the PM (Pichoff and Lutkenhaus, 2005)
Summary
Department of Cell Biology, Duke University Medical Center, Durham, NC, United States Edited by: Arieh Zaritsky, Ben-Gurion University of the Negev, Beersheba, Israel Specialty section: This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.