Abstract
Considering that simulations of turbulent combustion are computationally expensive, this chapter takes a decidedly different perspective, that of high-performance computing (HPC). The cost scaling arguments of non-reacting turbulence simulations are revisited and it is shown that the cost scaling for reacting flows is much more stringent for comparable conditions, making parallel computing and HPC indispensable. Hardware abstractions of typical parallel supercomputers are presented which show that for design of an efficient and optimal program, it is essential to exploit both distributed memory parallelism and shared-memory parallelism, i.e. hierarchical parallelism. Principles of efficient programming at various levels of parallelism are illustrated using archetypal code examples. The vast array of numerical methods, particularly schemes for spatial and temporal discretization, are examined in terms of tradeoffs they present from an HPC perspective. Aspects of data analytics that invariably result from large feature-rich data sets generated by combustion simulations are covered briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.