Abstract

We model and analyze the influence of small amplitude transverse wall oscillations on the evolution of velocity perturbations in channel flows. We quantify the effect of stochastic outside disturbances on velocity perturbation energy and develop a framework for the optimal selection of transverse oscillation parameters for turbulence suppression. A perturbation analysis is used to demonstrate that depending on the wall oscillation frequency the energy of velocity perturbations can be increased or decreased compared to the uncontrolled flow. Our results elucidate the capability of properly designed oscillations to reduce receptivity of the linearized Navier-Stokes equations to stochastic disturbances, which entails decreased levels of variance in wall-bounded shear flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.