Abstract

We present a link between the theory of deep water waves and that of bubble surface perturbations. Theory correspondence is shown analytically for small wavelengths in the linear regime and investigated numerically in the nonlinear regime. To do so, we develop the second-order spatial perturbation equations for the Rayleigh-Plesset equation and solve them numerically. Our code is publicly available. Studying capillary waves on stable bubbles, we recreate the Kolmogorov-Zakharov spectrum predicted by weak turbulence theory, putting wave turbulence theory to use for bubbles. In this investigation, it seems that curvature does not affect turbulent properties. The calculated bubble surface responds qualitatively to low gravity experiments. The link demonstrated opens new possibilities for studying several bubble phenomena, including sonoluminescence and cavitation, using the extensive tools developed in the wave turbulence framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.