Abstract

Purpose. Research of the TGV-200 turbogenerator rotor heating in case of rotor winding damages, which occur as a result of prolonged operation of the turbogenerator, namely - clogging of the ventilation channels of the rotor winding and the occurrence of short circuits of the rotor windings. Particular attention is paid to heating during short-term increasing of the excitation current, which is performed to keep the generator in synchronous mode of operation. Methods. Field mathematical models are used. Results. It is determined that the clogging of the rotor winding ducts has a greater effect on the rotor heating compared to the short circuits of the individual windings of the rotor winding. It was defined that increasing of the excitation current within the limits regulated by the current standards of the turbogenerators operation becomes impossible with clogging of a small number of ventilation channels of the rotor winding, which impairs the efficiency of the turbogenerator and requires its output to repair. Scientific novelty. A mathematical model of rotor heating is developed in case of typical damages of the rotor winding. Practical value. The areas in the rotor where the temperatures and temperature gradients reach the highest values was determined, which allows to recommend the locations of the optimal temperature sensors placements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.