Abstract

AbstractHydrogen abstraction from 1‐phenylethanol by triplet acetophenone occurs from both CH and OH bonds. The reaction path of the Interacting‐State Model (ISM) is used with the Transition‐State Theory (TST) and the semiclassical correction for tunnelling (ISM/scTST) to help rationalizing the experimental kinetic results and elucidate the mechanisms of these reactions. The weak exothermicity of the abstraction from the strong OH bond is compensated by electronic effects, hydrogen bonding and tunnelling, and is competitive with the more exothermic abstraction from the α‐CH bond of 1‐phenylethanol. The alkoxy radical formed upon abstraction from OH reacts within the solvent cage and the primary product of this reaction is 1‐phenylethenol. The corresponding kinetic isotope effect is ca. 3 and is entirely consistent with a tunnelling correction ca. 9 for H abstraction. We therefore demonstrate that the tunnelling correction is the major contributor to the kinetic isotope effect. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.