Abstract

We report Monte Carlo simulations of systems of polydisperse prolate and oblate ellipsoids using the critical path based tunneling-percolation model. For polydisperse prolate ellipsoids, the critical percolation volume fraction ϕc is shown to have a quasi-universal dependence on weight-averaged aspect ratio. For polydisperse oblate ellipsoids, ϕc is shown to have a quasi-universal dependence on the apparent aspect ratio, which is a function of up to fourth moment of the size distribution, as given by the generalized connectedness percolation theory. The functions are observed to approach the theoretical predictions for higher volume fractions and higher aspect ratios. The model predictions are compared with experimental data available on polydisperse multi-walled nanotubes (prolate ellipsoids) and graphene nanoplatelets (oblate ellipsoids) to estimate the tunneling lengthscale which is found to be well within the expected range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.