Abstract

Direct bandgap and significant anisotropic properties are crucial and beneficial for nanoelectronic applications. In this work, through first-principles calculations, we investigate novel two-dimensional (2D) α-XC (X = P, As, Sb, Bi) materials, which possess a direct bandgap of 0.73 to 1.40 eV with remarkable anisotropic electronic properties. Intriguingly, 2D α-XC presents the highest electron mobility near 8 × 103 cm2 V-1 s-1 along the Γ-X direction. Moreover, the transfer characteristics of the 2D α-XC TFETs are thoroughly assessed through NEGF methods. AsC TFETs demonstrate an on-state current larger than 2.2 × 103 μA μm-1, which can satisfy the International Technology Roadmap for Semiconductors (ITRS) for high-performance requirements. In particular, the minimum value of subthreshold swing of devices is as low as 15 mV dec-1, indicating excellent device switching characteristics. The relevant calculation results show that 2D α-XC monolayers could be a promising candidate in next-generation high-performance device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.