Abstract
We have studied hydrogen-atom tunneling in the cis-to-trans conformational change of some carboxylic acid monomers and formic acid (FA) complexes and dimers at the MP2(full) and CCSD(T) levels of theory within the Wentzel-Kramers-Brillouin approximation. The barrier for the minimum energy path, where the OH bond length and the COH bending angle are optimized, is found to be a good approximation for providing the highest barrier transparency. The matrix effect on the transmission coefficients of cis-FA monomer, trans-cis FA dimer (tc1), and cis-acetic acid monomer are modeled by the polarizable continuum model (PCM) at the MP2(full) level of theory in different environments. For the cis-FA monomer and trans-cis FA dimer (tc1), the calculated transmission coefficients agree with the experimental lifetimes observed in noble-gas solids. However, this method cannot reproduce the experimental results obtained for cis-acetic acid. Moreover, the long lifetime of cis-FA and cis-acetic acid in the N2 environment cannot be reproduced either, which is most probably due to specific interactions that are not included in the PCM. The calculation for cis-HCOOD shows a strong decrease of the barrier transparency compared to that for cis-HCOOH, which is consistent with the experiments. In general, good agreement is observed between the calculated barrier transparency (including PCM) and experimental tunneling rate. However, some exceptions are found, which shows that additional factors influence the tunneling rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.