Abstract

The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m0 and 2.24m0 for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal–oxide–semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.