Abstract

Cross-point memory architecture (CPMA) by using memristors has attracted considerable attention because of its high-density integration. However, a common and significant drawback of the CPMA is related to crosstalk issues between cells by sneak currents. This study demonstrated the sneak current free resistive switching characteristic of a ferroelectric tunnel diode (FTD) memristor for a CPMA by utilizing a novel concept of a ferroelectric quadrangle and triangle barrier switch. A FTD of Au/BaTiO3 (5 nm)/Nb-doped SrTiO3 (100) was used to obtain a desirable memristive effect for the CPMA. The FTD could reversibly change the shape of the ferroelectric potential from a quadrangle to a triangle. The effect included high nonlinearity and diode characteristics. It was derived from utilizing different sequences of carrier transport mechanisms such as the direct tunneling current, Fowler-Nordheim tunneling, and thermionic emission. The FTD memristor demonstrated the feasibility of sneak current-free high-density CPMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.