Abstract

Physical asymmetrical Metal / AZO / SiOx / n-Si / Metal devices in semiconductor-insulator-semiconductor (A-SIS) framework were investigated for their anormaly current-voltage characteristics under light irradiation. The devices showed a normal rectifying character in dark but manifested a peculiar current-voltage feature at reverse bias under illumination. Considering the change of energy band structure at the reverse electric field, it was found that the transport of electrons was mainly dominated by the thermionic emission and quantum tunneling at low voltage. With the increase of the reverse bias, the electrons were able to tunnel through the reduced barrier of ultra-thin SiOx layer (<1nm) and an effective triangle-like barrier of silicon. An appropriate simulation of the J-V relationship demonstrated that the photons acting as the assisted part magnified the reverse current density, and the thickness of SiOx layer managed the amount of the reverse saturation current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.