Abstract
Direct and Fowler–Nordheim tunneling currents through oxide and dual layer silicon oxide–silicon nitride dielectrics are investigated for substrate and gate injection. The calculations include depletion effects in the heavily doped (n+) polysilicon gate electrodes as well as quantization effects in the less heavily doped n-type substrates. The Wentzel–Kramers–Brillouin (WKB) effective mass approximation has been compared with exact calculations for the tunneling probability, and based on these comparisons it has been found that the WKB approximation is adequate for single layer dielectrics, but is not for the dual layer dielectrics that are the focus of this article. Using exact tunneling transmission calculations, current-voltage (I–V) characteristics for ultrathin single layer oxides with different thicknesses (1.4, 2.0, and 2.3 nm) have been shown to agree well with recently reported experiments. Extensions of this approach demonstrate that direct tunneling currents in oxide/nitride structures with oxide equivalent thickness of 1.5 and 2.0 nm can be significantly lower than through single layer oxides of the same respective thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.