Abstract

We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO3 films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k33), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m−1K−1 for stoichiometric homoepitaxial SrTiO3 to 2 W m−1K−1 for strontium-rich homoepitaxial Sr1+δTiOx films—by incorporating (SrO)2 Ruddlesden-Popper planar defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.