Abstract

In this theoretical study, quantum chemical analysis of five novel non-fullerene donor molecules designed from recently reported highly efficient (11.5%) donor molecule P2TBR, containing non-fused ring central thiophene-benzene-thiophene core, 2-D benzodithiophene donors, and end capped 3-methylrhodanine acceptors, has been performed to evaluate the photovoltaic parameters and their application in organic solar cells. These donor molecules consist of centrally introduced acrylonitrile acceptors in between thiophene-benzene-thiophene core of P2TBR, namely M1. Compounds M2-M5 were designed from M1 containing ZOPTAN core, through peripheral acceptor group modification by 2-methylenemalononitrile (M2), methyl 2-cyanoacrylate (M3), 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (M4), and 2-(3-methyl-5-methylene-4-oxothiazolidin-2-ylidene) malononitrile (M5). DFT and TD-DFT simulations of all molecules including reference were carried out using MPW1PW91 functional in conjunction with 6-31G (d, p) basis set. Optoelectronic properties, exciton dynamics, electron density distribution pattern, and charge mobility were further analyzed by absorption spectra, TDM plots, frontier molecular orbitals (FMO) analysis, and calculation of reorganization energies, respectively. Results reveal that central addition and end capped modification of acceptors in designed molecules proved to be effective strategy to finely tune the electronic and optical characteristics. Amongst all designed molecules, M4 exhibited improved opto-electronic parameters such as highest maximum absorption (695nm) in chloroform, least band gap (2.24eV), lowest values of λh (0.0034eV), and λe (0.0054eV) and lowermost binding energy (0.46eV), because of mutual effect of extended pi-conjugation and significant electron pulling nature of terminal acceptors. Moreover, higher dipole moment, lower values of hole reorganization energy, and improved Voc of designed molecules than reference (R) make them efficient donors to enhance PCE of photovoltaic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.