Abstract

Drawing inspiration from the enzyme nitrogenase in nature, researchers are increasingly delving into semiconductor photocatalytic nitrogen fixation due to its similar surface catalytic processes. Herein, we reported a facile and efficient approach to achieving the regulation of ZnO/ZnCr2 O4 photocatalysts with ZnCr-layered double hydroxide (ZnCr-LDH) as precursors. By optimizing the composition ratio of Zn/Cr in ZnCr-LDH to tune interfaces, we can achieve an enhanced nitrogen photofixation performance (an ammonia evolution rate of 31.7 μmol g-1 h-1 using pure water as a proton source) under ambient conditions. Further, photo-electrochemical measurements and transient surface photovoltage spectroscopy revealed that the enhanced photocatalytic activity can be ascribed to the effective carrier separation efficiency, originating from the abundant composite interfaces. This work further demonstrated a promising and viable strategy for the synthesis of nanocomposite photocatalysts for nitrogen photofixation and other challenging photocatalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.