Abstract

The tuning of electron affinity and secondary electron emission on diamond (100) surfaces due to cycloaddition with 1,3-butadiene is investigated by photoemission experiments and density functional theory (DFT) calculations. A significant reduction in electron affinity up to 0.7 eV and enhancement of secondary electron emission were observed after 1,3-butadiene adsorption. The lowering of vacuum level via 1,3-butadiene adsorption is supported by DFT calculations. The C-H bonds in the covalently bonded organics on diamond contribute to the enhanced secondary electron emission and reduced electron affinity in a mechanism similar to that of C-H bonds on hydrogenated diamond surfaces. This combination of strong secondary emission and low electron affinity by the organic functionalization of diamond has potential applications in diamond-based molecular electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.