Abstract

AbstractThe intriguing surface sensitivity of the single‐crystalline semiconductor nanowires offers tremendous opportunity in tuning the physical properties of nanophotonic and nanoelectronic devices for versatile applications. Particularly, in the pursuit of emerging photoelectrochemical (PEC)‐type devices, significant efforts have been devoted to understanding the charge transfer dynamics between the nanowires and the electrolyte. Here, a PEC‐type ultraviolet photodetector consisting of GaN p‐n junction nanowires as photoelectrodes is constructed. It is found that two competing charge transport processes at the nanowires’ surface as well as in the p‐n junction co‐determine the photoresponsive behavior of the device. Furthermore, the surface platinum (Pt) decoration has successfully tuned the charge transfer dynamics by enhancing the charge transport efficiency at the surface, resulting in a twenty‐fold increase of the photocurrent compared to the pristine GaN nanowires. Theoretical calculations reveal that the newly formed electronic states at the Pt/GaN interface account for the improved charge transfer at the surface, and the optimal hydrogen adsorption energy contributes to the boosted PEC reaction rate. The synergy of these two effects uncover the underlying mechanism of the high photoresponse of the constructed Pt/GaN‐nanowires‐based PEC photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.