Abstract

The suitability of monolithic polyimide aerogels as filter media for removal of airborne nanoparticles was investigated in this work by considering two solvents, N-methylpyrrolidone (NMP) and dimethylformamide (DMF) for tuning of meso- and macropore content. Polyimide gels were synthesized from the chemical reactions between solutions of pyromellitic dianhydride, 2,2'-dimethylbenzidine, and 1, 3, 5-triaminophenoxylbenzene. The gels were dried via supercritical drying in CO2 to obtain the aerogels. The porosity of polyimide aerogels was varied by changing the initial concentration of the solids in the solutions in the range of 2.5-10 wt %. The resulting aerogels show high porosity (91-98%), high specific surface area (473-953 m2/g), low bulk density (0.025-0.12 g/cm3), and solvent dependent macro- and mesopore content. The monoliths with bulk density of >0.05 g/cm3 produced high values of nanoparticle filtration efficiency (>99.95%) with air permeability of the order of 10-10 m2. A strong proportional relationship was observed between the macropore content and air permeability and between the mesopore content and high filtration efficiency. Specimens prepared in DMF and NMP offered the same level of filtration efficiency, but the former provided a factor of 2 higher air permeability due to much greater proportion of macropores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.