Abstract
The exact output regulation problem for Takagi-Sugeno (TS) fuzzy models, designed from linear local subsystems, may have a solution if input matrices are the same for every local linear subsystem. Unfortunately, such a condition is difficult to accomplish in general. Therefore, in this work, an adaptive network-based fuzzy inference system (ANFIS) is integrated into the fuzzy controller in order to obtain the optimal fuzzy membership functions yielding adequate combination of the local regulators such that the output regulation error in steady-state is reduced, avoiding in this way the aforementioned condition. In comparison with the steepest descent method employed for tuning fuzzy controllers, ANFIS approximates the mappings between local regulators with membership functions which are not necessary known functions as Gaussian bell (gbell), sigmoidal, and triangular membership functions. Due to the structure of the fuzzy controller, Levenberg-Marquardt method is employed during the training of ANFIS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.