Abstract

Nitrate (NO3–) is an important raw ingredient for fertilizer, but its conventional synthesis is restricted by high energy consumption and CO2 emissions. Though there have been some studies on photocatalytic nitrogen oxidation, the production rate of nitrate is undesirable and the excited-state charge-transfer pathway still remains unclear. Herein, we fabricated the V-doped W18O49 nanowires (V- W18O49) for direct nitrate synthesis from N2 photooxidation. The NO3- production rate is as high as 39.85 μmol g−1 h−1 with exceptional catalytic stability and the photosynthetic nitrate fertilizer was employed to promote the growth of crops. Time-resolved spectroscopic results confirmed that the introduction of V doping in V- W18O49 has created new high-efficiency electron-transfer (ET) pathways from the W-O site to the V-dopant under photoirradiation, which leads to an improved π-backdonation process that facilitates nitrogen activation. This newly formed ET channel facilitated efficient charge separation and ultrafast photogenerated carriers transfer, thus overcame the sluggish ET kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.