Abstract

We report the growth of europium sesquioxide (Eu2O3) thin films by pulsed laser deposition (PLD) in vacuum at room temperature from a pure Eu2O3 ceramic bulk target. The films were deposited in different configurations formed by adding capping and/or buffer layers of amorphous aluminum oxide (a-Al2O3). The optical properties, refractive index and extinction coefficient of the as deposited Eu2O3 layers were obtained. X-ray photoelectron spectroscopy (XPS) measurements were done to assess its chemical composition. Post-deposition annealing was performed at 500°C and 850°C in air in order to achieve the formation of crystalline films and to accomplish photoluminescence emission. According to the analysis of X-ray diffraction (XRD) spectra, cubic and monoclinic phases were formed. It is found that the relative amount of the phases is related to the different film configurations, showing that the control over the crystallization phase can be realized by adequately designing the structures. All the films showed photoluminescence emission peaks (under excitation at 355nm) that are attributed to the intra 4f-transitions of Eu3+ ions. The emission spectral shape depends on the crystalline phase of the Eu2O3 layer. Specifically, changes in the hypersensitive 5D0→7F2 emission confirm the strong influence of the crystal field effect on the Eu3+ energy levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.