Abstract

Because of its ultrahigh hardness, synthetic diamond has been widely used in advanced manufacturing and mechanical engineering. As an ultra-wide bandgap semiconductor, on the other hand, diamond recently shows a great potential in electronics industry due to its outstanding physical properties. However, like silicon-based electronics, the electrical properties of diamond should be well modulated before it can be practically used in electronic devices. In this work, we briefly review the recent progresses in producing high-quality, electronic grade synthetic diamonds, as well as several typical strategies, from the conventional element doping to the emerging “elastic strain engineering,” (ESE) for tuning the electrical and functional properties of microfabricated diamonds. We also briefly show some device application demonstrations of diamond and outline some remaining challenges that are impeding diamond’s further practical applications as functional devices and offer some perspective for future functional diamond development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.