Abstract

Block copolymer templating enables the generation of well-defined pore sizes and geometries in a wide variety of frameworks, typically through evaporation-induced self-assembly (EISA). Here, we systematically modulate the solvent quality with mixtures of tetrahydrofuran-ethanol (THF-EtOH) to manipulate the unimer/micelle ratio in the precursor solution to explore how the associated solution structure influences the final pore morphology. A bottlebrush block copolymer (BBCP) with poly(ethylene oxide) and poly(t-butyl acrylate) side chains was used as the template for pore formation. Irrespective of the solvent composition, a bimodal pore size distribution was obtained with mesopores templated by small aggregates of the BBCP unimers (potentially low aggregation number micelles) and macropores templated by large self-assembled BBCP micelles. The morphology and pore characteristics of the metal oxide films were dependent on the THF-EtOH composition. Interestingly, an intermediate solvent composition where the volume of micelles is approximately half the volume of unimers (in the precursor solution) leads to the best ordering of micelle-templated pores and also the maximum porosity in the films. The micelle/unimer ratios in the precursor solutions do not correspond directly to the bimodal pore distribution in the metal oxide films, which we attribute to kinetically trapped assembly of the BBCP at a low THF content. The increased critical micelle concentration at high THF composition leads to changes in the unimer/micelle ratio during solvent evaporation. These results appear to be universal for a number of metal oxides (cobalt, magnesium, and zinc) with the porosity maximized at a THF/EtOH ratio of 3:1. These results suggest the potential for enhancements in the porosity of block copolymer-templated films by EISA methods through judicious solvent selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.