Abstract

The lowermost mantle is driven to Earth's surface by mantle plumes, providing a volcanic record of its structure and composition. Plumes comprise a head and tail, which melt to form large igneous provinces (LIPs) and ocean island basalts (OIBs), respectively. Recent analyses have shown that LIPs and OIBs exhibit tungsten (W) isotope heterogeneity that was created in the first ∼60 million years of our solar system's evolution. Moreover, the isotopic signature found in LIPs differs to that found in OIBs, revealing that the melt products of plume heads must be dominated by a different ancient mantle reservoir to that of plume tails. However, existing geodynamical studies suggest that plume heads and tails sample the same deep-mantle source region and, therefore, cannot account for any systematic differences in composition. Here, we present a suite of numerical simulations of thermo-chemical plumes and an isotopic model for W sources in the mantle. Our results demonstrate that the W isotope systematics of LIPs and OIBs can, under certain conditions, arise as a dynamical consequence of plumes forming in a heterogeneous, thermo-chemical boundary layer. We find that ultra low-velocity zones (ULVZs), which sit on the core–mantle boundary (CMB), likely contribute to the chemical diversity observed in OIBs but not LIPs, while any dense components residing inside large low shear-wave velocity provinces (LLSVPs) may contribute to both. This study places geochemical observations from Earth's surface in a geodynamically consistent framework and illuminates their relationship with seismically imaged features of the deep mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.