Abstract

We present a low power architecture that dynamically controls wordlengths in a wireless OFDM demodulator. Finding the optimum wordlength for digital circuit systems is difficult because the trade-off between the hardware cost and system performance is not conclusive. Actual circuit systems have large wordlengths at the circuit design level to avoid calculation errors caused by a lack of dynamic range. This indicates that power dissipation can still be reduced under better conditions. We propose a tunable wordlength architecture that dynamically changes its own wordlength according to the communication environment. The proposed OFDM demodulator measures error vector magnitudes (EVMs) from de-modulated signals and tunes the wordlength to satisfy the required quality of communication by monitoring the EVM performance. The demodulator can reduce dissipated energy by a maximum of 32 and 24% in AWGN and multipath fading channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.