Abstract

We propose a layer-by-layer graphene/insulator stacks based terahertz plasmonic sensor of refractive index of testing samples using a prism-coupling attenuated total reflection configuration. An angular interrogation technique has been used to explore the performance of the sensor in terms of detecting accuracy, sensitivity, and figure of merit (FOM). From the analysis of theoretical resonance angle of the sensor and the finite element method (FEM) based simulation, we reveal that the number of graphene layer ( N ), the Fermi level energy $(E_{F})$ of graphene, and refractive index of testing samples have a great effect on these performance parameters. The simulated results show that more layers of graphene will result in higher detection accuracy but lower sensitivity and FOM. The effective detection accuracy can be improved through high doping levels or with multilayer graphene. The maximum detection accuracy is 7.14 degree–1 for $N\,= \,5$ at $E_{F}\,= \,{\rm{1.6\,eV}}$ . The maximum sensitivity is 51.0°/RIU, along with a FOM up to 12.75 RIU–1 for $N\,= \,1$ at $E_{F}\,= \,{\rm{1.0\,eV}}$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.