Abstract

Different from the traditional tunable Smith–Purcell (SP) radiation in the graphene-based gratings in the terahertz band, we propose a tunable SP radiation generated from an electron beam passing through a single-layer molybdenum disulfide (MoS2) based grating in the visible band. The comparison between the simulation and the theoretical results shows good agreement. By varying the Fermi energy of MoS2 from 0.025 eV to 0.125 eV for the MoS2-based grating, we can not only control the radiation frequency but also can change the radiation magnitude. The radiation frequency, angle, and magnitude varying with the Fermi energy are also discussed, respectively. These properties would have potential applications in developing tunable visible SP radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.