Abstract

AbstractMechanical metamaterials exhibit unusual mechanical properties that originate from their topological design. Origami graphene may provide a platform for constructing novel carbon nanostructures. In the current study, a novel composite material that incorporates aligned graphene with localized origami shapes into the copper matrix is designed. Unlike many auxetic materials that have void phase, the proposed layer‐by‐layer assembled composite material appears to be solid in the microscopic scale. Based on the molecular dynamics (MD) simulations, it is observed that depending on the origami shapes, the in‐plane Poisson's ratio of origami graphene reinforced copper (100) composites can be tuned from positive to negative and, more importantly, it is discovered that the Young's modulus of the graphene/Cu composites can also be tuned from positive to negative in certain in‐plane directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.