Abstract
In this paper, triblock copolymer polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (PI-b-PS-b-P2VP) micelles containing HAuCl4 were spin-coated on silicon wafers followed by calcination to form gold nanoparticle arrays. Subsequently the surface optical performances of poly(3-hexylthiophene) (P3HT)-coated Au nanoparticle arrays were investigated. The particle size and the interparticle distance of the gold nanoparticle arrays could be controlled by adjusting the molar ratio of HAuCl4 precursor to vinyl pyridine units in PI-b-PS-b-P2VP and the spin speed during spin-coating. The results demonstrated that Au nanoparticle arrays with large nanoparticle size were able to produce strong electromagnetic field enhancement. Furthermore, the ratio of average particle size to average interparticle distance increased with decreasing spin speed, resulting in strong electromagnetic field enhancement for metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.