Abstract

Dirac cone, one of the main characters of topological materials, provides us an approach to explore topological phase transitions and topological states. Single-element 2D-Xenes are prominent candidates for hosting Dirac cones. Till now, the multiple Dirac cones, Dirac-like cones, and semi-metal Dirac point have been discovered in them. However, it is still difficult to realize the tunable Dirac cones due to the lack of appropriate materials. Using first-principles calculations, this paper proposes that monolayer selenium with square lattice could achieve tunable Dirac cones and a topological phase transition. Double structural phases of the monolayer selenium can be distinguished according to strain applied, i.e., buckled square and buckled rectangular phases, which have rich Dirac physics. There exist four anisotropic Dirac cones in the buckled square phase, owing to fourfold symmetry. The buckled rectangular phase hosts a topological phase transition from a 2D topological insulator with double Dirac cones to a simple insulator, with a Dirac semi-metal having single Dirac point as the phase transition point. Moreover, the topological insulator has a global band gap of 0.16 eV, suggesting its potential utilizations in room-temperature devices. These studies will greatly promote the development of the Dirac physics and widen the application ranges of 2D-Xenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.