Abstract

We propose and demonstrate a carbon nanotube (CNT)-based field emission nanoscale diode to realize a fully integrated nanoscale system, namely, a true nanosystem. To the best of our knowledge, this is the first time a nanodiode simultaneously achieves ease of fabrication and individual tunability of multiple CNT diodes on the nanoscale on the same substrate in a one-time process. A nanodiode comprises a single-wall CNT cathode placed on a substrate, layered insulator, and metal anode. The proposed nanodiode allows us to adjust the turn-on voltage from 1 to 2.4 V by varying the surface area of the anode. Furthermore, as an example of a basic nano-electronic system, nanodiode-based fundamental logic gates (OR and NAND) are demonstrated on a CNT. We propose a theoretical model that derives the theoretical I–V characteristics based on the image-charge method to design the nanodiode quickly. The results in this study contribute to the development of carbon-based nanoelectronic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.