Abstract

A simple coprecipitation technique was introduced to form manganese (Mn) doped on zinc oxide (ZnO) nanoparticles effectively. Based on our morphological studies, it was revealed that mean particle size was increased while bigger agglomeration of nanoparticles could be observed as the amount of concentration of Mn was increased. Interestingly, it was found that the position of the absorption spectra was shifted towards the lower wavelength (UV region) as correlated with the increasing of Mn dopants concentration into ZnO nanoparticles. This result inferred that optimum content of Mn doped into the ZnO nanoparticles was crucial in controlling the visible/UV‐responsive of samples. In the present study, 3 mol% of Mn dopants into the ZnO nanoparticles exhibited the better UV as well as visible light‐responsive as compared to the other samples. The main reason might be attributed to the modification of electronic structure of ZnO nanoparticles via lattice doping of Mn ions into the lattice, whereas excessive Mn dopants doped on ZnO nanoparticles caused the strong UV‐responsive due to the more 3d orbitals in the valence band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.