Abstract

Because of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, block copolymer micelles are widely utilized for chemotherapy drug delivery. In order to further improve the anti-tumor ability and reduce unwanted side effects of drugs, tumor-targeting peptides were used to functionalize the surface of polymer micelles so that the micelles can target tumor tissues. Herein, we synthesized a kind of PEG-PLA that is maleimide-terminated and then conjugated with a specific peptide F3 which revealed specific capacity binding to nucleolin that is overexpressed on the surface of many tumor cells. Then, F3 conjugated, paclitaxel loaded nanoparticles (F3-NP-PTX) were prepared as stable micelles that displayed an enhanced accumulation via a peptide-mediated cellular association in human breast cancer cells (MCF-7). Furthermore, F3-NP-PTX showed a prominent anti-tumor efficacy compared with non-targeting nanoparticles (NP-PTX) both in vitro and in vivo, and showed great potential as an efficacious targeting drug delivery system for breast cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.