Abstract
Nitric oxide (NO) is a gaseous pleiotropic molecule that can both induce irreversible oxidative damages and modulate physiological signal transductions by transient protein modifications, the most important of which is the S-nitrosylation of cysteine residues. Being noxious and healthy, the role of NO in cancer is seemingly contradictory, as at low concentrations it mediates tumor growth and proliferation whereas at high concentrations it promotes apoptosis and cancer growth inhibition. However, it is becoming evident that when endogenously produced, such as upon inducible nitric oxide synthase (NOS) activation, NO acts to sustain tumorigenesis. Similarly, although less explored, defects and deficiency in the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR) have been associated with the development and malignancy of liver and breast cancers, suggesting a primary role for NO signaling-that is, S-nitrosylation, being deeply involved in neoplastic transformation and progression. In this review, we summarize past and recent evidence on the role of S-nitrosylation and GSNOR in different processes that contribute to cell transformation when deregulated, such as DNA damage repair, energetic metabolism, and cell death. We also outline possible S-nitrosylation-targeted proteins that might contribute to tumorigenesis, and, finally, we speculate on the role of GSNOR in regulating the oncogenic effects induced downstream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.