Abstract
Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin-stimulated endothelial function in humans. Healthy, lean male volunteers were studied. On each study day, 3 acetylcholine (ACh) or sodium nitroprusside (SNP) dose-response studies were performed by infusion into the brachial artery. Before and during the last 2 dose-response studies, insulin and/or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow. Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (P<0.001), and this inhibition was larger during insulin infusion (P=0.01) but not further increased by NG-monomethyl-L-arginine acetate (P=0.2). Insulin potentiated the SNP response less than the ACh response and the effect of TNF-alpha was smaller (P<0.001); TNF-alpha had no effect on the SNP response without insulin infusion. Thus, TNF-alpha inhibition of the combined response to insulin and ACh was likely mediated through inhibition of NO production. These results support the concept that TNF-alpha could play a role in the development of insulin resistance in humans, both in muscle and in vascular tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.