Abstract

The inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is elevated in inflamed periodontal tissues and may contribute to periodontitis progression. TNF-α stimulates formation and activity of osteoclasts, the cells that are recruited in periodontitis, that cause alveolar bone degradation and subsequent tooth loss. We previously showed that TNF-α is elevated in co-cultures of periodontal ligament fibroblast (PDLF) and peripheral blood mononuclear cells (PBMC). Hence, TNF-α could be a determining factor in osteoclast formation in these cultures, as osteoclasts are formed despite the fact that prototypical osteoclast differentiation factor receptor activator of nuclear factor kappa-B ligand is outnumbered at least 100-fold by its inhibitor osteoprotegerin in these cultures. To assess the role of TNF-α in periodontitis-associated osteoclast formation invitro, osteoclast formation was analyzed in the presence of the anti-TNF-α therapeutic agent infliximab in two culture systems: (i) PBMC in co-culture with PDLFs from controls and patients with periodontitis, or (ii) with PBMC only. PDLFs from control and patients withperiodontitis were exposed to infliximab, PBMCs were added and the formation of osteoclast-like cells was assessed. TNF-α was highest levels in supernatants at 7d in co-cultures and declined at 14 and 21d. TNF-α was undetectable in cultures that received infliximab. The formation and activity of osteoclasts in co-cultures was not affected by infliximab. In contrast, infliximab in cultures of only PBMC significantly reduced the formation of osteoclasts. This reduction was accompanied by a decreased number and size of cell clusters, a step that precedes the formation ofosteoclasts. TNF-α was again undetectable in the supernatant of infliximab-treated cultures, but was detectable at similar levels in cell lysates of control andinfliximab-treated PBMC cultures. Our study shows that the contribution of TNF-α to osteoclast formation is cell system dependent. It contributes to PBMC-induced osteoclast formation, possibly by establishing stronger cell-cell interactions that precede osteoclast formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.