Abstract

BackgroundProper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation.MethodsMural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43.ResultsUsing parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support detected by NG2 staining.ConclusionsOur data indicate that i) functional Cx43 is required for mural cell-induced endothelial quiescence, and ii) downregulation of Cx43 GJ by tumors frees endothelium to respond to angiogenic cues. These data define a novel and important role for maintained Cx43 function in regulation of vessel quiescence, and suggest its loss may contribute to pathological tumor angiogenesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1420-9) contains supplementary material, which is available to authorized users.

Highlights

  • Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent

  • We find that Connexin 43 (Cx43)-based gap junction activity is required for the mural cell-induced endothelial quiescence that is characteristic of stabilized vessels, and that breast tumor cell downregulation of mural cell Cx43 is sufficient to release endothelial cells from this inhibition to allow endothelial proliferation

  • In order to study the effects of tumors on mural cell dissociation at the initiation of angiogenesis, we first tested whether tumors reverse the inhibitory effects of mural cells in an in vitro endothelial cell-mural cell co-culture using primary human vascular smooth muscle cells (vSMC) as a mural cell model and GFPlabeled Human umbilical vein endothelial cells (HUVEC) as the endothelial component

Read more

Summary

Introduction

Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Proper physical and functional association between mural cells and endothelial cells (EC) causes EC to become quiescent [1]. The vasculature formed by a tumor is highly disorganized and exhibits decreased and abnormal association with mural cells [4, 5], which allows the vessel to be unstable, leaky and proliferative. Knowledge of the mechanism(s) by which mural cells dissociate from vessels would significantly increase the understanding of physiological blood vessel development, as well as pathological conditions such as tumor angiogenesis in which these basic processes appear to be deregulated

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.