Abstract
Although CD19 chimeric antigen receptor-T (CAR-T) cells therapy has achieved unparalleled success in B cell malignancies. The dysfunction of CAR-T cells due to exhaustion is considered as a key factor for treatment failure, and the mechanisms of exhaustion remain elusive. Extracellular vesicles (EVs), important media for communication between tumor and immune cells, may contribute to CAR-T cell exhaustion. Here, we demonstrated that CD19+ tumor cells derived EVs (NALM6-EVs) can carry CD19 antigen and activate CD19 CAR-T cells. The transient activation induced a supraphysiologic inflammatory state with increased release of multiple cytokines. Besides, the sustained activation led CD19 CAR-T cells to enter an exhausted state with upregulated inhibitory receptors, decreased expansion ability, exaggerated effector cell differentiation and impaired antitumor activity. Transcriptomic profiling validated these findings and identified dynamic changes in CD8+ effector T, CD8+ exhausted T, CD8+RRM2+ T and T helper cell subpopulations during activation to exhaustion, as well as changes in many cytokines, inflammatory and immune-related pathways. Our findings identify a credible mechanism of CAR-T cell exhaustion that driven by tumor-derived EVs and provide a novel possible trigger for early cytokine release syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.