Abstract

Highly heterogenous cancers, such as triple-negative breast cancer (TNBC), remain challenging immunotherapeutic targets. Herein, we describe the synthesis and evaluation of immunotherapeutic liposomal spherical nucleic acids (SNAs) for TNBC therapy. The SNAs comprise immunostimulatory oligonucleotides (CpG-1826) as adjuvants and encapsulate lysates derived from TNBC cell lines as antigens. The resulting nanostructures (Lys-SNAs) enhance the codelivery of adjuvant and antigen to immune cells when compared to simple mixtures of lysates with linear oligonucleotides both in vitro and in vivo, and reduce tumor growth relative to simple mixtures of lysate and CpG-1826 (Lys-Mix) in both Py230 and Py8119 orthotopic syngeneic mouse models of TNBC. Furthermore, oxidizing TNBC cells prior to lysis and incorporation into SNAs (OxLys-SNAs) significantly increases the activation of dendritic cells relative to their nonoxidized counterparts. When administered peritumorally in vivo in the EMT6 mouse mammary carcinoma model, OxLys-SNAs significantly increase the population of cytotoxic CD8+ T cells and simultaneously decrease the population of myeloid derived suppressor cells (MDSCs) within the tumor microenvironment, when compared with Lys-SNAs and simple mixtures of oxidized lysates with CpG-1826. Importantly, animals administered OxLys-SNAs exhibit significant antitumor activity and prolonged survival relative to all other treatment groups, and resist tumor rechallenge. Together, these results show that the way lysates are processed and packaged has a profound impact on their immunogenicity and therapeutic efficacy. Moreover, this work points toward the potential of oxidized tumor cell lysate-loaded SNAs as a potent class of immunotherapeutics for cancers lacking common therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.