Abstract
Quantum calculations within density functional theory have predicted a new structure of lanthanum hydride La2H24 that is dynamically stable up to pressures about 150 GPa. It is a semimetal and has a low symmetry of crystal lattice $$P\bar{1}$$ . An important feature of this structure is the existence of quasimolecular hydrogen chains, which leads to the presence of phonon frequencies of about 420 meV, exceeding the maximum vibration frequency of the metallic hydrogen Fddd phase (ω ~ 360 meV). These properties make it possible to expect a high superconducting transition temperature for lanthanum hydride La2H24.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.