Abstract

AbstractThe shuttle effect and the sluggish reaction kinetics of lithium polysulfide (LiPS) seriously compromise the performance of lithium–sulfur batteries (LSBs). To overcome these limitations and enable the fabrication of robust LSBs, here the use of a Mott–Schottky catalyst based on bimetallic phosphide CoFeP nanocrystals supported on carbon nitride tubular nanostructures as sulfur hosts is proposed. Theoretical calculations and experimental data confirm that CoFeP@CN composites are characterized by a suitable electronic structure and charge rearrangement that allows them to act as a Mott–Schottky catalyst to accelerate LiPS conversion. In addition, the tubular geometry of CoFeP@CN composites facilitates the diffusion of Li ions, accommodates volume change during the reaction, and offers abundant lithiophilic/sulfiphilic sites to effectively trap soluble LiPS. Therefore, S@CoFeP@CN electrodes deliver a superior rate performance of 630 mAh g−1 at 5 C, and remarkable cycling stability with 90.44% capacity retention over 700 cycles. Coin cells with high sulfur loading, 4.1 mg cm−2, and pouch cells with 0.1 Ah capacities are further produced to validate their superior cycling stability. In addition, it is demonstrated here that CoFeP@CN hosts greatly alleviate the often overlooked issues of low energy efficiency and serious self‐discharging in LSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.