Abstract

Transformer-based method has demonstrated promising performance in image super-resolution tasks, due to its long-range and global aggregation capability. However, the existing Transformer brings two critical challenges for applying it in large-area earth observation scenes: (1) redundant token representation due to most irrelevant tokens; (2) single-scale representation which ignores scale correlation modeling of similar ground observation targets. To this end, this paper proposes to adaptively eliminate the interference of irreverent tokens for a more compact self-attention calculation. Specifically, we devise a Residual Token Selective Group (RTSG) to grasp the most crucial token by dynamically selecting the top- k keys in terms of score ranking for each query. For better feature aggregation, a Multi-scale Feed-forward Layer (MFL) is developed to generate an enriched representation of multi-scale feature mixtures during feed-forward process. Moreover, we also proposed a Global Context Attention (GCA) to fully explore the most informative components, thus introducing more inductive bias to the RTSG for an accurate reconstruction. In particular, multiple cascaded RTSGs form our final Top- k Token Selective Transformer (TTST) to achieve progressive representation. Extensive experiments on simulated and real-world remote sensing datasets demonstrate our TTST could perform favorably against state-of-the-art CNN-based and Transformer-based methods, both qualitatively and quantitatively. In brief, TTST outperforms the state-of-the-art approach (HAT-L) in terms of PSNR by 0.14 dB on average, but only accounts for 47.26% and 46.97% of its computational cost and parameters. The code and pre-trained TTST will be available at https://github.com/XY-boy/TTST for validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.