Abstract

AbstractOften, tsunami “sources” have been treated as a quasistatic problem. Initial studies have demonstrated that, for earthquake rupture velocities in the span of 1.5–3 km/s, the kinematic and static part of the tsunami can be treated separately. However, very slow earthquake rupture velocities in the span of 0.1–1 km/s have not been included in tsunami analytical or numerical modeling. Here, we calculated the tsunami efficiency, extending Kajiura’s definition for different models. We demonstrated that rupture velocity cannot be neglected for very slow events, that is, rupture velocities slower than 0.5 km/s. We also examined the relation of magnitude, earthquake rupture velocity, and tsunami amplitude to the efficiency of very slow tsunamigenic earthquakes. Hypothetical megathrust earthquakes (Mw>8.5) with very slow rupture velocities amplify energy from 10 to 60 times larger than moderate to large earthquakes (7.0<Mw<8.5) in the direction of rupture propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.