Abstract
Navigation in social environments, in the absence of traffic rules, is the difficult task at the core of the annual Tsukuba Challenge. In this context, a better understanding of the soft rules that influence social dynamics is key to improve robot navigation. Prior research attempts to model social behavior through microscopic interactions, but the resulting emergent behavior depends heavily on the initial conditions, in particular the macroscopic setting. As such, data-driven studies of pedestrian behavior in a fixed environment may provide key insight into this macroscopic aspect, but appropriate data is scarcely available. To support this stream of research, we release an open-source dataset of dynamic object trajectories localized in a map of 2017 Tsukuba Challenge environment. A data collection platform equipped with lidar, camera, IMU, and odometry repeatedly navigated the challenge’s course, recording observations of passersby. Using a background map, we localized ourselves in the environment, removed the static background from the point cloud data, clustered the remaining points into dynamic objects and tracked their movements over time. In this work, we present the Tsukuba Challenge Dynamic Object Tracks dataset, which features nearly 10,000 trajectories of pedestrians, cyclists, and other dynamic agents, in particular autonomous robots. We provide a 3D map of the environment used as global frame for all trajectories. For each trajectory, we provide at regular time intervals an estimated position, velocity, heading, and rotational velocity, as well as bounding boxes for the objects and segmented lidar point clouds. As additional contribution, we provide a discussion which focuses on some discernible macroscopic patterns in the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.