Abstract

We have obtained the carbon-13 nuclear magnetic resonance spectra of a series of tryptophan-containing peptides and model systems, together with their X-ray crystallographic structures, and used quantum chemical methods to predict the (13)C NMR shifts (or shieldings) of all nonprotonated aromatic carbons (C(gamma), C(delta 2) and C(epsilon 2). Overall, there is generally good accord between theory and experiment. The chemical shifts of Trp C(gamma) in several proteins, hen egg white lysozyme, horse myoglobin, horse heart cytochrome c, and four carbonmonoxyhemoglobins, are also well predicted. The overall Trp C(gamma) shift range seen in the peptides and proteins is 11.4 ppm, and individual shifts (or shieldings) are predicted with an rms error of approximately 1.4 ppm (R value = 0.86). Unlike C(alpha) and N(H) chemical shifts, which are primarily a function of the backbone phi,psi torsion angles, the Trp C(gamma) shifts are shown to be correlated with the side-chain torsion angles chi(1) and chi(2) and appear to arise, at least in part, from gamma-gauche interactions with the backbone C' and N(H) atoms. This work helps solve the problem of the chemical shift nonequivalences of nonprotonated aromatic carbons in proteins first identified over 30 years ago and opens up the possibility of using aromatic carbon chemical shift information in structure determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.